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Lorenz attractor in the Shimizu-Morioka system
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The curve of vanishing of the separatrix value l
A=0 

forms the boundary of the Lorenz attractor only for n<1/2

n = a1/g (For the SM system 0.31 < n < 0.81)
For n > 1/2 the boundary between Lorenz attractor and quasiattractor 
is much more complicated!

For the detailed analysis of bifurcations in the neighborhood of the curve l
A=0

 we study a one-dimensional 

factor-map of the corresponding Poincare map 

1D maps are constructed by maximal points of z-coordinate of the unstable separatrix
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The chart of kneading invariants for the SM-system. 
HB — homoclinic butterfly bifurcation
AH — Andronov-Hopf bifurcation
LA — on this curve the unstable separatrix tends to the
saddle cycle which is born from HB bifurcation

 l
A=0

- the curve on which the separatrix value vanishes
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Here w is a parameter of the splitting of a homoclinic loop
A is a sepratrix value.

Dynamics of the 1D factor (*) map near the curve l
A=0 
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The Lorenz attractor is a strange non-hyperbolic attractor which 
remains chaotic under small perturbations. For the first time, such chaotic 
behavior was discovered by E. Lorenz in the following system

Afraimovich, Bykov, and Shilnikov [1] proposed 
a geometric model for studying bifurcations and the 
topological structure of the Lorentz attractor. 
According to this model, the Lorentz attractor is a 
stable closed invariant set satisfying certain 
conditions of pseudo-hyperbolicity. 

The fulfillment of these conditions provides the existence of a 
stable foliation for the Poincare map, which allows reducing the 
problem to the study of a one-dimensional discontinuous map.

In the Lorenz system, the 
boundary between Lorenz 
attractor and quasiattractors is 

formed by the curve l
A=0 

 where 

the separatrix value A of the 
corresponding Poincare maps 
vanishes [2]. On the one side 

from the curve l
A=0 

, where A>0, 

the attractor is pseudo-
hyperbolic (PH), and it becomes 
a quaisattractor (QA) in a sense 
of Afraivovich and Shilnikov [3] 
on the other side, when A<0.

The violating of pseudohyperbolicity on the curve l
A=0

 is 

associated with the destruction of the stable foliations in the 
corresponding Poincare map [2]. 

It is important to note, that in the Lorenz system the saddle 
index n of the saddle equilibrium O(0,0,0) is less than 1/2 along 

the part of the curve l
A=023       24        25       26        27       28        29       30        31        32       33
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The detailed bifurcation analysis of SM system was done in [4, 5]  

For small values of parameter A, the term B|x|2n  in the normal form (*) plays an important role.

Below, in the charts of periodic regimes (left columns) the black region corresponds to the existence of a 
nontrivial attractor in the map (*). This attractor is a union of a finite number of intervals. The stability 
windows are shown in colors. Different colors correspond to different periods of stable periodic points. 
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For n < 1/2, the exponent in term B|x|2n is less than 1; therefore, the one-dimensional map (*) does 
not have stable periodic orbits at A > 0. The attractor becomes quasiattractor at A < 0.
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For n = 1/2 the stability windows tangent the curve A = 0

For n > 1/2 the map (*) has a zero derivative at the discontinuity point 0 and, therefore, can possess 
stable periodic orbits which also exist for positive values of A. Thus, the attractor can become a 
quasiattractor for A > 0.
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