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On the boundary between Lorenz attractor and quaisattractor

In Shimizu-Morioka system
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The Lorenz attractor is a strange non-hyperbolic attractor which {: N ol
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remains chaotic under small perturbations. For the first time, such chaotic

behavior was discovered by E. Lorenz in the following system
Afraimovich, Bykov, and Shilnikov [1] proposed , .

a geometric model for studying bifurcations and the X = O-(y R x) s

topological structure of the Lorentz attractor. y — x(r _ Z)

According to this model, the Lorentz attractor is a . f

stable closed invariant set satisfying certain \ Z = Xy — bz =

conditions of pseudo-hyperbolicity. s T T
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The fulfillment of these conditions provides the existence of a
stable foliation for the Poincare map, which allows reducing the
F: ﬁW e problem to the study of a one-dimensional discontinuous map.
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In the Lorenz system, the
boundary  between Lorenz
attractor and quasiattractors is

formed by the curve /,_, where

the separatrix value A of the
corresponding Poincare maps
vanishes [2]. On the one side

from the curve lA _,» Where A>0,

the attractor Iis pseudo-
hyperbolic (PH), and it becomes

a quaisattractor (QA) in a sense
of Afraivovich and Shilnikov [3]
on the other side, when A<O.

associated with the destruction of the stable foliations in
corresponding Poincare map [2].

the part of the curve [ _
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Lorenz attractor in the Shimizu-Morioka system =3 — AN — 52

The detailed bifurcation analysis of SM system was done in [4, 5] 5
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The violating of pseudohyperbolicity on the curve [ =0

It is important to note, that in the Lorenz system the saddle
index v of the saddle equilibrium O(0,0,0) is less than 1/2 along

the

1 /a=0.5, A\ \t:
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The chart of kneading invariants for the SM-system.

HB — homoclinic butterfly bifurcation

AH — Andronov-Hopf bifurcation

LA — on this curve the unstable separatrix tends to the
saddle cycle which is born from HB bifurcation ”

lA:()‘ the curve on which the separatrix value vanishes
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1D maps are constructed by maximal points of z-coordinate of the unstable separatrix

T 0.0

The curve of vanishing of the separatrix value l , forms the boundary of the Lorenz attractor only for v<1/2

|
v=a,/y (For the SM system 0.31 < v <0.81) m
For v> 1/2 the boundary between Lorenz attractor and quasiattractor
is much more complicated! ° ° ° .,,R%
-0, Y

For the detailed analysis of bifurcations in the neighborhood of the curve lAzO we study a one-dimensional
factor-map of the corresponding Poincare map

= (—1+ Alz|” + Blz|")sign(z) (*)
A=w?, B=g? .

Here o is a parameter of the splitting of a homoclinic loop
A is a sepratrix value.

Dynamics of the 1D factor (*) map near the curve / _
For small values of parameter A, the term B|x|?" in the normal form (*) plays an important role.

Below, in the charts of periodic regimes (left columns) the black region corresponds to the existence of a
nontrivial attractor in the map (*). This attractor is a union of a finite number of intervals. The stability
windows are shown in colors. Different colors correspond to different periods of stable periodic points.
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For v < 1/2, the exponent in term B|x|? is less than 1; therefore, the one-dimensional map (*) does
not have stable periodic orbits at A > 0. The attractor becomes quasiattractor at A < 0.
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For v =1/2 the stability windows tangent the curve A=0
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For V> 1/2 the map (*) has a zero derivative at the discontinuity point O and, therefore, can possess

stable periodic orbits which also exist for positive values of A. Thus, the attractor can become a
quasiattractor for A> 0.
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