HSE Researchers Teach Neural Network to Distinguish Origins from Genetically Similar Populations

Researchers from the AI and Digital Science Institute, HSE Faculty of Computer Science, have proposed a new approach based on advanced machine learning techniques to determine a person’s genetic origin with high accuracy. This method uses graph neural networks, which make it possible to distinguish even very closely related populations.
Over the past 10–15 years, genetic analysis has become increasingly popular not only as a tool for medical diagnostics, but also as a means of ancestry research. DNA testing allows people to learn more about their ethnic background, identify the places where their ancestors lived, and determine the number of Neanderthal mutations in a person’s genome.
This has become possible thanks to the development of modern technologies—such as genotyping, data storage and processing systems, and machine learning—and the significant reduction in their cost. However, current testing methods are unable to differentiate between genetically similar populations that have lived in adjacent regions for extended periods.
Researchers from the AI and Digital Science Institute have developed a method for distinguishing between individuals from closely related populations. At the heart of this technology are graph neural networks, which do not rely on DNA sequences but instead use graphs to represent genetic links between individuals with shared genome segments. These shared segments indicate the degree of kinship between people, revealing how many generations back their common ancestors lived. The more overlaps there are, the closer their ancestral connection is. In the model, each person is represented by a vertex in the graph, and the strength of the connection between them is indicated by the edges in the graph.
The method was tested on data from various regions. The results were particularly insightful for the population of the East European Plain, as a large dataset had already been compiled there. The graph neural network was able to accurately determine the population affiliation of individuals from genetically similar ethnic groups.
Aleksei Shmelev
‘Existing methods of genetic analysis address a different task: they identify affiliation with large, isolated groups, such as determining whether someone has French, German, or English ancestry. Our method enables the analysis of closely related populations, which is particularly relevant for Russia, a country with a diverse ethnic background,’ said Aleksei Shmelev, one of the study's authors and Research Assistant at the HSE International Laboratory of Statistical and Computational Genomics, AI and Digital Science Institute.
In their future work, the researchers aim to train the neural network to predict the proportion of different populations within a genome.
They have named their development AncestryGNN, which stands for 'Neural Network-Based Prediction of Population Affiliation via Shared Genome Segments.’
Vladimir Shchur
As noted by Vladimir Shchur, Head of the International Laboratory of Statistical and Computational Genomics at the AI and Digital Science Institute, HSE University, the proposed method holds great potential for more accurate understanding of human history and can be applied in genealogy and anthropology research.
This research was supported by a grant from the Government of the Russian Federation as part of the federal program ‘Artificial Intelligence.’
See also:
When a Virus Steps on a Mine: Ancient Mechanism of Infected Cell Self-Destruction Discovered
When a virus enters a cell, it disrupts the cell’s normal functions. It was previously believed that the cell's protective response to the virus triggered cellular self-destruction. However, a study involving bioinformatics researchers at HSE University has revealed a different mechanism: the cell does not react to the virus itself but to its own transcripts, which become abnormally long. The study has been published in Nature.
Researchers Identify Link between Bilingualism and Cognitive Efficiency
An international team of researchers, including scholars from HSE University, has discovered that knowledge of a foreign language can improve memory performance and increase automaticity when solving complex tasks. The higher a person’s language proficiency, the stronger the effect. The results have been published in the journal Brain and Cognition.
Artificial Intelligence Transforms Employment in Russian Companies
Russian enterprises rank among the world’s top ten leaders in AI adoption. In 2023, nearly one-third of domestic companies reported using artificial intelligence. According to a new study by Larisa Smirnykh, Professor at the HSE Faculty of Economic Sciences, the impact of digitalisation on employment is uneven: while the introduction of AI in small and large enterprises led to a reduction in the number of employees, in medium-sized companies, on the contrary, it contributed to job growth. The article has been published in Voprosy Ekonomiki.
Lost Signal: How Solar Activity Silenced Earth's Radiation
Researchers from HSE University and the Space Research Institute of the Russian Academy of Sciences analysed seven years of data from the ERG (Arase) satellite and, for the first time, provided a detailed description of a new type of radio emission from near-Earth space—the hectometric continuum, first discovered in 2017. The researchers found that this radiation appears a few hours after sunset and disappears one to three hours after sunrise. It was most frequently observed during the summer months and less often in spring and autumn. However, by mid-2022, when the Sun entered a phase of increased activity, the radiation had completely vanished—though the scientists believe the signal may reappear in the future. The study has been published in the Journal of Geophysical Research: Space Physics.
‘Engagement in the Scientific Process’: HSE Launches Master’s Programme in Neurobiology
The HSE University Academic Council has elected to launch a new Master's programme in Neurobiology for students majoring in Biology. Students of the programme will have access to unique equipment and research groups, providing them with the knowledge and experience to pursue careers in science, medicine and pharmacy, IT and neurotechnology, and education and HR services.
Banking Crises Drive Biodiversity Loss
Economists from HSE University, MGIMO University, and Bocconi University have found that financial crises have a significant negative impact on biodiversity and the environment. This relationship appears to be bi-directional: as global biodiversity declines, the likelihood of new crises increases. The study examines the status of populations encompassing thousands of species worldwide over the past 50 years. The article has been published in Economics Letters, an international journal.
Scientists Discover That the Brain Responds to Others’ Actions as if They Were Its Own
When we watch someone move their finger, our brain doesn’t remain passive. Research conducted by scientists from HSE University and Lausanne University Hospital shows that observing movement activates the motor cortex as if we were performing the action ourselves—while simultaneously ‘silencing’ unnecessary muscles. The findings were published in Scientific Reports.
Russian Scientists Investigate Age-Related Differences in Brain Damage Volume Following Childhood Stroke
A team of Russian scientists and clinicians, including Sofya Kulikova from HSE University in Perm, compared the extent and characteristics of brain damage in children who experienced a stroke either within the first four weeks of life or before the age of two. The researchers found that the younger the child, the more extensive the brain damage—particularly in the frontal and parietal lobes, which are responsible for movement, language, and thinking. The study, published in Neuroscience and Behavioral Physiology, provides insights into how age can influence the nature and extent of brain lesions and lays the groundwork for developing personalised rehabilitation programmes for children who experience a stroke early in life.
Scientists Test Asymmetry Between Matter and Antimatter
An international team, including scientists from HSE University, has collected and analysed data from dozens of experiments on charm mixing—the process in which an unstable charm meson oscillates between its particle and antiparticle states. These oscillations were observed only four times per thousand decays, fully consistent with the predictions of the Standard Model. This indicates that no signs of new physics have yet been detected in these processes, and if unknown particles do exist, they are likely too heavy to be observed with current equipment. The paper has been published in Physical Review D.
HSE Scientists Reveal What Drives Public Trust in Science
Researchers at HSE ISSEK have analysed the level of trust in scientific knowledge in Russian society and the factors shaping attitudes and perceptions. It was found that trust in science depends more on everyday experience, social expectations, and the perceived promises of science than on objective knowledge. The article has been published in Universe of Russia.


